Сетевой уровень в модели взаимодействия открытых систем osi

Содержание:

Описание уровней сетевой модели

Уровень приложений (7) (прикладной уровень) – это отправная и в то же время конечная точка данных, которые Вы хотите передать по сети. Этот уровень отвечает за взаимодействие приложений по сети, т.е. на этом уровне общаются приложения. Это самый верхний уровень и необходимо помнить это, при решении возникающих проблем.

На этом уровне работают такие протоколы как: HTTP, POP3, SMTP, FTP, TELNET и другие. Другими словами приложение 1 посылает запрос приложению 2 по средствам этих протоколов, и для того чтобы узнать, что приложение 1 послало запрос именно приложению 2, между ними должна быть связь, вот именно протокол и отвечает за эту связь.

Уровень представления (6) – этот уровень отвечает за кодирование данных, для того чтобы их потом можно было передать по сети и соответственно преобразует их обратно, для того чтобы приложение понимало эти данные. После этого уровня данные для других уровней становятся одинаковыми, т.е. без разницы, что это за данные, будь то документ word или сообщение электронной почты.

На этом уровне работают такие протоколы как: RDP, LPP, NDR и другие.

Сеансовый уровень (5) – отвечает за поддержание сеанса между передачей данных, т.е. продолжительность сеанса отличается, в зависимости от передаваемых данных, поэтому его необходимо поддерживать или прекращать.

На этом уровне работают следующие протоколы: ASP, L2TP, PPTP и другие.

Транспортный уровень (4) – отвечает за надежность передачи данных. Он также разбивает данные на сегменты и собирает их обратно, так как данные бывают разного размера. Существует два известных протокола этого уровня — это TCP и UDP. TCP протокол дает гарантию на то, что данные будут доставлены в полном объеме, а протокол UDP этого не гарантирует, именно поэтому их используют для разных целей.

Сетевой уровень (3) – он предназначен для  определения пути, по которому должны пройти данные. На этом уровне работают маршрутизаторы. Также он отвечает за: трансляцию логических адресов и имён в физические, определение короткого маршрута, коммутацию и маршрутизацию, отслеживание неполадок в сети. Именно на этом уровне работает протокол IP и протоколы маршрутизации, например RIP, OSPF.

Канальный уровень (2) – он обеспечивает взаимодействие на физическом уровне, на этом уровне определяются MAC адреса сетевых устройств, также здесь ведется контроль ошибок и их исправление, т.е. посылает повторный запрос поврежденного кадра.

Физический уровень (1) – это уже непосредственно преобразование всех кадров в электрические импульсы и обратно. Другими словами физическая передача данных. На этом уровне работают концентраторы.

Вот так выглядит весь процесс передачи данных с точки зрения этой модели. Она является эталонной и стандартизированной и поэтому на ней основаны другие сетевые технологии и модели в частности модель TCP/IP.

Шестой уровень, представления данных (presentation layer, L6)

О задачах уровня представления вновь говорит его название. Шестой уровень занимается тем, что представляет данные (которые все еще являются PDU) в понятном человеку и машине виде. Например, когда одно устройство умеет отображать текст только в кодировке ASCII, а другое только в UTF-8, перевод текста из одной кодировки в другую происходит на шестом уровне.

Шестой уровень также занимается представлением картинок (в JPEG, GIF и т.д.), а также видео-аудио (в MPEG, QuickTime). Помимо перечисленного, шестой уровень занимается шифрованием данных, когда при передаче их необходимо защитить.

Уровни модели OSI

Прикладной уровень (application layer)

Это самый верхний уровень сетевой модели OSI. Его ещё называют уровень приложений. Предназначен для взаимодействия пользователя с сетью. Уровень предоставляет приложениям возможность использования различных сетевых служб.

Функции:

  • удалённый доступ;
  • почтовый сервис;
  • формирование запросов к следующему уровню (уровень представления)

Сетевые протоколы уровня:

  • BitTorrent
  • HTTP
  • SMTP
  • FTP
  • SNMP
  • TELNET

Уровень представления (presentation layer)

Это второй уровень. По другому называют представительским уровнем. Предназначен для преобразование протоколов, а так же для кодировки и декодировки данных. На данном этапе, запросы доставленные с прикладного уровня, формируются в в вид данных для передачи по сети и наоборот.

Функции:

  • сжатие/распаковка данных;
  • кодирование/декодирование данных;
  • перенаправление запросов

Сетевые протоколы уровня:

  • AFP
  • ICA
  • LPP
  • NCP
  • NDR
  • XDR

Сеансовый уровень (session layer)

Этот уровень сетевой модели OSI отвечает за поддержание сеанса связи. Благодаря данному уровню приложения могут взаимодействовать друг с другом на протяжении долгого времени.

Функции:

  • предоставление прав
  • создание/приостановление/восстановление/завершение связи

Сетевые протоколы уровня:

  • ISO-SP
  • L2TP
  • NetBIOS
  • PPTP
  • SMPP
  • ZIP

Транспортный уровень (transport layer)

Это четвёртый уровень, если вести отсчёт сверху. Предназначен для надёжной передачи данных. При этом, передача не всегда может быть надёжной. Возможны дублирование и недоставка посылки данных.

Сетевые протоколы уровня:

  • TCP
  • UDP
  • SST
  • FCP
  • RTP

Сетевой уровень (network layer)

Данный уровень сетевой модели OSI отвечает за определение наилучшего и кратчайшего маршрута для передачи данных.

Функции:

  • присвоение адреса
  • отслеживание коллизий
  • определение маршрута
  • коммутация

Сетевые протоколы уровня:

  • IPv4/IPv6
  • IPX
  • CLNP
  • IPsec
  • RIP
  • OSPF

Канальный уровень (Data Link layer)

Это шестой уровень, который отвечает за доставку данных между устройствами которые находятся в одной сетевой области.

Функции:

  • адресация на уровне аппаратного обеспечения
  • контроль за ошибками
  • исправление ошибок

Сетевые протоколы уровня:

  • PPP
  • SLIP
  • LAPD
  • IEEE 802.11 wireless LAN,
  • FDDI
  • ARCnet
  • ATM

Физический уровень (physical layer)

Самый нижний и самый последний уровень сетевой модели OSI. Служит для определения метода передачи данных в физической/электрической среде. Допустим, любой сайт, например «играть онлайн казино http://bestforplay.net», расположен на каком то сервере, интерфейсы которого тоже передают какой нибудь электрический сигнал по кабелям и проводам.

Функции:

  • определение вида передачи данных
  • передача данных

Сетевые протоколы уровня:

  • IEEE 802.15 (Bluetooth)
  • 802.11Wi-Fi
  • GSMUm radio interface
  • ITU и ITU-T
  • EIARS-232

Соответствие модели OSI и других моделей сетевого взаимодействия

Поскольку наиболее востребованными и практически используемыми стали протоколы (например TCP/IP), разработанные с использованием других моделей сетевого взаимодействия, далее необходимо описать возможное включение отдельных протоколов других моделей в различные уровни модели OSI.

Семейство TCP/IP

Семейство TCP/IP имеет три транспортных протокола: TCP, полностью соответствующий OSI, обеспечивающий проверку получения данных; UDP, отвечающий транспортному уровню только наличием порта, обеспечивающий обмен датаграммами между приложениями, не гарантирующий получения данных; и SCTP, разработанный для устранения некоторых недостатков TCP, в который добавлены некоторые новшества. В семействе TCP/IP есть ещё около двухсот протоколов, самым известным из которых является служебный протокол ICMP, используемый для внутренних нужд обеспечения работы; остальные также не являются транспортными протоколами.

Семейство IPX/SPX

В семействе IPX/SPX порты появляются в протоколе сетевого уровня IPX, обеспечивая обмен датаграммами между приложениями (операционная система резервирует часть сокетов для себя). Протокол SPX, в свою очередь, дополняет IPX всеми остальными возможностями транспортного уровня в полном соответствии с OSI.

В качестве адреса хоста ICX использует идентификатор, образованный из четырёхбайтного номера сети (назначаемого маршрутизаторами) и MAC-адреса сетевого адаптера.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Множественный доступ к каналу связи

Предположим, есть какая-то общая среда передачи данных, к которой подключены несколько компьютеров и они начали передавать данные одновременно. Но так как среда передачи данных одна, то данные искажаются и не могут быть прочитаны из среды. Это называется коллизия. Подуровень MAC обеспечивает управление доступом, к разделяемой среде. В один и тот же момент времени, канал связи для передачи данных должен использовать только один отправитель. В противном случае произойдет коллизия и данные искажаются. 

Методы управления доступом: 

  • Рандомизированный метод. Предположим, к среде подключено N устройств в этом случае для передачи данных случайным образом выбирается одно из этих устройств с вероятностью 1/N. Такой подход применяется в технологиях канального уровня изернет и вай-фай. 
  • Определение правил использования среды, например, в технологии Token Ring, данные может передавать только одно устройство, у которого сейчас находится токен. После того как это устройство передало данные, оно передает токен следующему устройству и следующее устройство может передавать данные. Хотя такой подход обеспечивает более эффективное использование полосы пропускания канала связи, но он требует более дорогого оборудования. Поэтому на практике получил распространение рандомизированный подход. 

Раньше было очень много технологий канального уровня, каждая из которых обладала теми или иными преимуществами и недостатками. Однако сейчас в процессе развития остались только две популярные технологии это ethernet и вай-фай. 

Мы рассмотрели канальный уровень, его основные задачи. Выяснили, что канальный уровень может обнаруживать и исправлять ошибки. Спасибо за прочтение статьи, надеемся она была для Вас полезной. 

Методы выделения кадров

Чтобы определить, где в потоке бит начинаются и заканчиваются отдельные frame, были придуманы следующие методы: 

  • Указание количества байт; 
  • Вставка байтов (byte stuffing) и битов (bit stuffing);
  • Средства физического уровня. 

Указатель количества байт

Наипростейший способ определить, где начинается и заканчивается кадр — добавлять длину этого кадра в начало кадра. Например, на картинке ниже показано 3 кадра выделенных разным цветом. В начале каждого кадра указано количество байт. Синим цветом — 6, желтым — 8, зеленым — 4. 

Этот метод прост в реализации,  но есть недостаток, искажение данных при передаче по сети. Например, при передаче первого кадра появилось искажение и вместо длины кадра шесть байт,  получатель получил семь байт. 

Получатель посчитает, что семь это длина кадра. Далее идет длина следующего кадра. Здесь она два байта, затем длина следующего кадра семь. Если у нас произошла хоть одна ошибка, то будет нарушена последовательность чтений. Следовательно такой метод на практике не годится к  применению. 

Вставка byte и bit

Чтобы определить начало и конец кадра, в начале и конце каждого кадра используют специальные последовательности байт или бит. Вставка байтов применялась в протоколах BSC компании IBM, в котором отправлялись обычные текстовые символы. 

Перед передачей каждого фрейма добавлялись байты DLE STX (start of text), а после окончания передачи фрейма DLE ETX (end of text). Проблема может возникнуть в том, что в данных тоже может встретиться точно такая же последовательность. 

Чтобы отличать последовательность, которая встречается в данных от управляющих символов используются Escape последовательности. В протоколе BSC это тоже последовательность символов DLE (data link escape). Если какая-то последовательность управляющих символов встречается в данных перед ними добавляются escape последовательности DLE, чтобы протокол понимал, что в реальности это данные, а не управляющие символы. 

Вставка битов применяется в более современных протоколах, таких как HDLC и PPP. Здесь перед началом и концом каждого кадра добавляется последовательность бит состоящая из 01111110. Может возникнуть проблема, если в данных встречаются подряд идущие 6 или более единиц. Чтобы решить эту задачу в данные, после каждых пяти последовательно идущих 1 добавляется 0. Затем, как получатель прочитал 5 последовательно идущих 1 и встретил 0, то он, этот 0 игнорирует. 

Средства физического уровня

Другой вид определения начала и конца кадра, это использование средств физического уровня и он применяется в технологии Ethernet. В первом варианте технологии ethernet использовалась преамбула — это последовательность данных, которая передается перед началом каждого кадра. Она состоит из 8 байт. Первые семь байт состоят из чередующихся 0 и 1: 10101010. Последний байт содержит чередующиеся 0 и 1, кроме двух последних бит в котором две единицы. И именно такая последовательность говорит, что начинается новый кадр. 

В более старых версиях используется избыточное кодирование, позволяющее определить ошибки, но при этом не все символы являются значащими. В технологии Fast Ethernet применили эту особенность кода и используют символы, которые не применяются для представления данных в качестве сигналов о начале и конце кадра. 

Перед отправкой каждого кадра передаются символы J (11000) и K (10001), а после окончания отправки кадра передается символ T (01101).

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Литература

  • А. Филимонов. Построение мультисервисных сетей Ethernet. — М.: BHV, 2007. ISBN 978-5-9775-0007-4.
  • Руководство по технологиям объединённых сетей. 4-е изд. — М.: Вильямс, 2005. ISBN 5-8459-0787-X.
  • Интернет ресурс: сервер :
    • Этот сервер, содержащий сведения по сетевым технологиям начал формироваться в 1997 году. Он частично создан на средства, выделенные по проектам РФФИ (99-07-90102 и 01-07-90069).
    • В основу материалов легли тексты книг:
      • «Протоколы и ресурсы Интернет» (Радио и связь, М. 1996),
      • «Сети Интернет. Архитектура и протоколы» (Сиринъ, М. 1998),
      • «Протоколы Интернет. Энциклопедия» («Горячая линия — Телеком», М. 2001, 1100 стр.),
      • «Протоколы Internet для электронной торговли» («Горячая линия — Телеком», М. 2003, 730 стр.),

которые базировались на двух курсах, читаемых студентам[значимость факта?] кафедр «Телекоммуникационные сети и системы» (факультет МФТИ ФРТК), «Интеграции и менеджмента» (факультет МФТИ ФОПФ) и «Информатики» (факультет НаноБиоИнфоКогни МФТИ) — «Каналы и сети передачи данных», «Протоколы Интернет».

Другие сетевые модели

Важное значение с точки зрения организации сетей имеет также модель DoD (Department of Defense — Министерство обороны США), так как в основе протоколов TCP/IP лежит не модель OSI, а именно эта модель. Поскольку модель DoD во многом совпадает с моделью OSI, тот факт, что она является фундаментом протоколов TCP/IP, может привести к некоторой путанице при изучении модели OSI

Верхние уровни модели DoD не совпадают с верхними уровнями модели OSI, поэтому в разных книгах можно встретить различные описания порядка расположения протоколов в модели OSI. Но здесь необходимо прежде всего учитывать, что фактически знание того, где должен быть указанный протокол модели OSI, необходимо в основном для успешной сдачи экзаменов; а на практике важнее всего понимание назначения каждого уровня модели.

Модели DoD и OSI

Модели OSI и DoD позволяют наглядно представить процесс сетевого взаимодействия, а компания Cisco применяет в своей работе иерархическую межсетевую модель, которая представляет собой многоуровневое отображение топологического проекта объединенной сети. Эта модель разработана в целях максимального повышения производительности; в то же время она обеспечивает оптимальную отказоустойчивость. Применение этой модели позволяет упростить конструкцию сети путем распределения функций по уровням сетевого проекта. Очевидным недостатком данной модели в сетях небольших и средних размеров является высокая стоимость проекта, но если задача состоит в создании высокопроизводительной, масштабируемой, резервируемой объединенной сети, то применение такого подхода является одним из наилучших способов реализации в проекте поставленных целей.

Иерархическая межсетевая модель Cisco состоит из трех уровней:

  1. Уровень ядра сети. Этот уровень объединенной сети соответствует опорной сети. Поскольку опорная сеть играет такую важную роль, любые серьезные нарушения в ее работе скорее всего будут заметны для всех, кто использует эту объединенную сеть. Кроме того, поскольку скорость здесь играет очень важную роль (в связи с огромным объемом трафика, который проходит по опорной сети), на этом уровне практически не должны быть реализованы функции, требующие значительных ресурсов маршрутизации или коммутации. Иными словами, маршрутизация, обработка списков доступа, сжатие, шифрование и все прочие функции, требующие больших затрат ресурсов, должны быть выполнены до того, как пакет поступит в ядро сети.
  2. Распределительный уровень. Этот уровень занимает промежуточное положение между уровнем ядра сети и уровнем доступа. Клиенты не взаимодействуют непосредственно с этим уровнем, но на нем выполняется основная часть функций обработки передаваемых ими пакетов. На этом уровне выполняется также основная часть вспомогательных функций. В частности, на нем функционируют службы маршрутизации, обеспечения качества обслуживания (Quality of Service — QоS), проверки списков доступа, шифрования, сжатия и трансляции сетевых адресов (Network Address Translation — NAT).
  3. Уровень доступа. На этом уровне пользователям предоставляется доступ к локальным сегментам. Характерной особенностью уровня доступа является применение соединений локальной сети, обычно в сетевой среде небольшого масштаба (такой как отдельное здание). Иными словами, именно на этом уровне происходит подключение клиентов к сети. Обычно на уровне доступа выполняется коммутация Ethernet и другие основные функции.

Пример практического применения этой модели приведен на рис.10.


Рис.10. Иерархическая межсетевая модель Cisco.

Уровни OSI

Для наглядности процесс работы сети принято разделять на 7 уровней, на каждом из которых работает своя группа протоколов.

Для выполнения разных задач имеется несколько протоколов, которые занимаются обслуживанием систем, например, стек TCP/IP. Давайте здесь внимательно посмотрим на то, каким образом информация с одного компьютера отправляется по локальной сети на другой комп.

Задачи компьютера ОТПРАВИТЕЛЯ:

  • Взять данные из приложения
  • Разбить их на мелкие пакеты, если большой объем
  • Подготовить к передаче, то есть указать маршрут следования, зашифровать и перекодировать в сетевой формат.

Задачи компьютера ПОЛУЧАТЕЛЯ:

  • Принять пакеты данных
  • Удалить из него служебную информацию
  • Скопировать данные в буфер
  • После полного приема всех пакетов сформаровать из них исходный блок данных
  • Отдать его приложению

Для того, чтобы верно произвести все эти операции и нужен единый свод правил, то есть эталонная модель OSI.

Вернемся у к уровням OSI. Их принято отсчитывать в обратном порядке и в верхней части таблицы располагаются сетевые приложения, а в нижней — физическая среда передачи информации. По мере того, как данные от компьютера спускаются вниз непосредственно к сетевому кабелю, протоколы, работающие на разных уровнях, постепенно их преобразовывают, подготавливая к физической передаче.

Разберем их подробнее.

6. Уровень представления (Presentation Layer)

Переводит эти данные на единый универсальный язык. Дело в том, что каждый компьютерный процессор имеет собственный формат обработки данных, но в сеть они должны попасть в 1 универсальном формате — именно этим и занимается уровень представления.

5. Сеансовый уровень (Session Layer)

У него много задач.

  1. Установить сеанс связи с получателем. ПО предупреждает компьютер-получатель о том, что сейчас ему будут отправлены данные.
  2. Здесь же происходит распознавание имен и защита:
    • идентификация — распознавание имен
    • аутентификация — проверка по паролю
    • регистрация — присвоение полномочий
  3. Реализация того, какая из сторон осуществляет передачу информации и как долго это будет происходить.
  4. Расстановка контрольных точек в общем потоке данных для того, чтобы в случае потери какой-то части легко было установить, какая именно часть потеряна и следует отправить повторно.
  5. Сегментация — разбивка большого блока на маленькие пакеты.

4. Транспортный уровень (Transport Layer)

Обеспечивает приложениям необходимую степень защиты при доставке сообщений. Имеется две группы протоколов:

  • Протоколы, которые ориентированы на соединение — они отслеживают доставку данных и при необходимости запрашивают повторную отправку при неудаче. Это TCP — протокол контроля передачи информации.
  • Не ориентированные на соединение (UDP) — они просто отправляют блоки и дальше не следят за их доставкой.

3. Сетевой уровень (Network Layer)

Обеспечивает сквозную передачу пакета, рассчитывая его маршрут. На этом уровне в пакетах ко всей предыдущей динформации, сформированной другими уровнями, добавляются IP адреса отправителя и получателя. Именно с этого момент пакет данных называется собственно ПАКЕТОМ, у которого есть IP адреса (IP протокол — это протокол межсетевого взаимодействия).

2. Канальный уровень (Data Link Layer)

Здесь происходит передача пакета в пределах одного кабеля, то есть одной локальной сети. Он работает только до пограничного маршрутизатора одной локальной сети. К полученному пакету канальный уровень добавляет свой заголовок — MAC адреса отправителя и получателя и в таком виде блок данных уже называется КАДРОМ.

При передачи за пределы одной локальной сети пакету присваивается MAC не хоста (компьютера), а маршрутизатора другой сети. Отсюда как раз появляется вопрос серых и белых IP, о которых шла речб в статье, на которую была выше дана ссылка. Серый — это адрес внутри одной локальной сети, который не используетс яза ее пределами. Белый — уникальный адрес во всем глобальном интернете.

При поступлении пакета на пограничный роутер IP пакета подменяется на IP этого роутера и вся локальная сеть выходит в глобальную, то есть интернет, под одним единственным IP адресом. Если адрес белый, то часть данных с IP адресом не изменяется.

1. Физический уровень (Transport layer)

Отвечает за преобразование двоичной информации в физический сигнал, который отправляется в физический канал передачи данных. Если это кабель, то сигнал электрический, если оптоволоконная сеть, то в оптический сигнал. Осуществляется это преобразование при помощи сетевого адаптера.

Канальный уровень

Канальный уровень (data link layer) – он нам нужен для взаимодействия сетей на физическом уровне. Наверное, все слышали о MAC-адресе, вот он является физическим адресом. Устройства канального уровня – коммутаторы, концентраторы и т.п.

IEEE (Institute of Electrical and Electronics Engineers — Институт инженеров по электротехнике и электронике) определяет канальный уровень двумя подуровнями: LLC и MAC.

LLC – управление логическим каналом (Logical Link Control), создан для взаимодействия с верхним уровнем.

MAC – управление доступом к передающей среде (Media Access Control), создан для взаимодействия с нижним уровнем.

Объясню на примере: в Вашем компьютере (ноутбуке, коммуникаторе) имеется сетевая карта (или какой-то другой адаптер), так вот для взаимодействия с ней (с картой) существует драйвер. Драйвер – это некоторая программа — верхний подуровень канального уровня, через которую как раз и можно связаться с нижними уровнями, а точнее с микропроцессором (железо) – нижний подуровень канального уровня.

Типичных представителей на этом уровне много. PPP (Point-to-Point) – это протокол для связи двух компьютеров напрямую. FDDI (Fiber Distributed Data Interface) – стандарт передаёт данные на расстояние до 200 километров. CDP (Cisco Discovery Protocol) – это проприетарный (собственный) протокол принадлежащий компании Cisco Systems, с помощью него можно обнаружить соседние устройства и получить информацию об этих устройствах.

Вся третья часть курса CCNA (Exploration 3) об устройствах второго уровня.

Уровни в модели OSI:

Теперь пришло время рассказать какие уровни есть в модели OSI, для чего нужны и какие протоколы используют. Всего их семь как говорилось выше.

  1. Физический уровень — Определяет как переносить данные с одного компьютера на другой, работает на битовом уровне;
  2. Канальный уровень — Этот уровень нужен для обеспечения сети на физическом уровне;
  3. Сетевой уровень — Нужен для определения пути по которому будут отправятся данные;
  4. Транспортный уровень — Модель нужна для надёжной отправки данных от одного устройства, к другому;
  5. Сеансовый уровень — Этот уровень нужен для обеспечения сеанса связи между двумя компьютерами;
  6. Уровень представления — Обеспечивает преобразование протоколов и кодирование/декодирование данных;
  7. Прикладной уровень — Уровень обеспечивает взаимодействие пользователя со сетью;

Как видите тут описано кратко, для чего нужен каждый протокол, это сделано потому что, про каждый уровень по хорошому нужна отдельная статья, возможно такие статьи в будущем появится.

Функции сеансового уровня

Сеансовые уровень выполняет задачи организации и проведения диалога между прикладными процессами

1.  Установление сеансового соединения

2.  Обмен данными

3.  Управление взаимодействием

4.  Синхронизация сеансового соединения

5.  Извещение об исключительных ситуациях

6.  Отображение сеансовго соединения на транспортное соединение

7.  Завершение сетевого соединения

Функции транспортного уровня.

Транспортный уровень выполняет сквозные соединения между прикладными процессами, прикладными объектами. При создании транспортного уровня должна быть создана его полная независимость от характера взаимодействующих прикладных процессов

1.  Установление и разъединение транспортных соединений

2.  Обеспечение взаимодействия сетевых соединений с транспортными

3.  Управление последовательностями и обеспечение целостности блоков данных, передаваемых через транспортные соединения

4.  Обнаружение ошибок, их частичное исправление и передача сообщений о неисправленных ошибках 5.Восстановление соединений после появления неисправностей

9.Сброс блоков транспортных соединений при тупиковых ситуациях

17 Сетевой уровень

Сетевой уровень

Сетевой уровень — это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным «подсетям», которые могут находиться в разных географических пунктах. В данном случае «подсеть» — это по сути независимый сетевой кабель (иногда называемый сегментом).

Т. к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

Уровни управления:

сетевой — обеспечивает передачу данных через базовую СПД (сеть передачи данных). Управление сетью, реализуемое на этом уровне, состоит в выборе маршрута передачи данных по линиям, связывающим узлы сети.

Модель OSI

Полностью модель взаимодействия открытых систем выглядит так, как показано на рисунке ниже. 

Отдельно выделяются хосты, это устройства, где работают полезные пользовательские программы. И сетевое оборудование, такое как маршрутизаторы, коммутаторы и другие сетевые устройства. На сетевом оборудовании есть только 3 уровня: физический, канальный и сетевой. Уровни начиная с транспортного работают только на хостах. 

На всех остальных уровнях взаимодействие идет, по звеньям цепи, данные передаются от одного сетевого устройства к другому и так пока не дойдут до нужного хоста. 

Транспортный уровень обеспечивает сквозное соединение. Между двумя взаимодействующими хостами может находиться большое количество сетевых устройств, но они не влияют на работу транспортного уровня, поэтому ТУ называется сетенезависимым. Он позволяет скрыть от разработчиков приложений детали сетевого взаимодействия. 

Пятый уровень, сеансовый (session layer, L5)

Пятый уровень оперирует чистыми данными; помимо пятого, чистые данные используются также на шестом и седьмом уровне. Сеансовый уровень отвечает за поддержку сеанса или сессии связи. Пятый уровень оказывает услугу следующему: управляет взаимодействием между приложениями, открывает возможности синхронизации задач, завершения сеанса, обмена информации.

Службы сеансового уровня зачастую применяются в средах приложений, требующих удаленного вызова процедур, т.е. чтобы запрашивать выполнение действий на удаленных компьютерах или независимых системах на одном устройстве (при наличии нескольких ОС).

Примером работы пятого уровня может служить видеозвонок по сети. Во время видеосвязи необходимо, чтобы два потока данных (аудио и видео) шли синхронно. Когда к разговору двоих человек прибавится третий — получится уже конференция. Задача пятого уровня — сделать так, чтобы собеседники могли понять, кто сейчас говорит.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector