Шина pci
Содержание:
- Как выбрать желаемую карту PCIe?
- Применение PCI Express в компьютере. Разъемы PCI Express
- PCIe 4.0 быстрее?
- Описание PCI
- Скорость передачи и метод шифрования
- PCIe SSD на шине PCI-e 2.0 или 1.0
- Циклы шины
- Распиновка PCI Express
- Устаревшие поколения
- Принцип работы
- Роли устройств на шине
- Шина PCI
- Что такое PCI Express и что он обозначает?
- Как работает карта PCI Express?
- Версия PCIe: 4.0, 3.0, 2.0 и 1.0
- Основные характеристики PCI–Express (1.0, 2.0 и 3.0)
Как выбрать желаемую карту PCIe?
Прежде всего, чтобы использовать карту PCI Express, на вашем компьютере должен быть хотя бы один свободный слот PCI Express. Если вы применяете проводную сеть, не приобретая разработанную систему, вам следует поискать некоторые карты PCIe. Однако выбрать подходящую карту PCIe сбивает с толку
При выборе следует обратить внимание на некоторые факторы:
-
Версия карты PCIe и ширина слота: убедитесь, что тип карты PCI Express совместим с вашим текущим оборудованием и сетевым окружением.
-
Стандарты протокола: Перед покупкой необходимо понять, поддерживает ли карта требуемые стандарты, такие как RDMA, RoCE, iSCSI и FCoE.
-
Контроллер: чипы от Intel, Broadcom, Mellanox и Realtek.
После определения вышеупомянутых трех факторов, все еще есть некоторые переменные, которые будут влиять на ваш выбор, такие как скорость передачи, номер порта, тип разъема, операционная система, марка и цена. Вам может помочь полное руководство по покупке сетевого адаптера: Как выбрать сетевую карту?
Применение PCI Express в компьютере. Разъемы PCI Express
Контроллер (управляющее устройство) линий PCIe не так давно встраивался только в чипсет (главную микросхему) материнской платы. Но, начиная с 2009 года, контроллер PCIe добавляется производителями также и непосредственно в центральный процессор. Это уменьшает задержки и позволяет процессору более эффективно взаимодействовать с другими устройствами. Версии и количество линий PCIe в разных моделях процессоров и чипсетов отличается. Бо́льшая их часть формируется в разъемы, размещаемые на материнской плате. Они позволяют подключать к компютеру разнообразные устройства (видеокарты, звуковые карты, сетевые карты, Wi-Fi-адаптеры и др.). На материнской плате современного компьютера можно найти разъемы PCIe нескольких видов, отличающихся количеством используемых в них линий PCIe (от х1 до х16 линий). Не зависимо от того, насколько старым является компьютер, и какая версия PCIe в нем используется, эти разъемы всегда выглядят одинаково:на изображении: верхний разъем — PCIe x4, по средине — PCIe x16, внизу — PCIe x1
Разные версии PCIe являются полностью совместимыми. То есть, если в старый компьютер, где используется версии PCIe 2.0, установить, например, видеокарту с PCIe 4.0, она будет нормально работать. Однако, реальная скорость обмена данными при этом у нее будет ограничена возможностями PCIe 2.0. И наоборот, в самый новый компьютер с PCIe 4.0 можно без проблем установить старую видеокарту с PCIe 2.0. Еще одной особенностью PCIe является совместимость разных ее разъемов. В разъем PCIe x16 можно подключить не только видеокарту, но и абсолютно любое другое устройство PCIe, в том числе и с разъемом PCIe x8, PCIe x4 или PCIe x1. Совместимость разъемов сохраняется также и в обратную сторону. То есть, в разъем PCIe x1 можно установить видеокарту с разъемом PCIe x16. Физически она туда не войдет, но если разрезать заднюю стенку разъема (как на изображении ниже), то все получится. Это, конечно же, «кустарщина» и без крайней надобности так делать не нужно. Тем более, что видеокарта при таком подключении будет работать в режиме PCIe x1, что весьма негативно скажется на ее быстродействии.
В ноутбуках для установки дополнительных устройств вместо упомянутых выше разъемов используется более компактный вариант — Mini PCIe. Линии PCIe используются также для создания некоторых других разъемов, в чатности, разъемов M.2 (служат для подключения современных запоминающих устройств, а также устройств некоторых других типов).
на изображении — разъем M.2 с запоминающим устройством в нем
PCIe 4.0 быстрее?
Да, PCIe 4 быстрее, чем предыдущее поколение, PCIe 3. Он почти в два раза быстрее, удваивая скорость передачи данных до 16 гигатрансферов в секунду (G / Ts). Однако G / Ts — не очень полезная метрика передачи данных для подавляющего большинства людей, включая меня.
В более полезных терминах слот x16 PCIe 4.0 (самый большой слот) имеет одностороннюю передачу данных до 32 ГБ / с. Это означает, что вы можете иметь скорость до 64 ГБ / с в обоих направлениях. Однако использование большего количества 64 ГБ / с немного неискренне, потому что вы не достигнете этой скорости в одном направлении.
Тем не менее, 32 ГБ / с — это значительное улучшение в PCIe 3.0, которое достигает 16 ГБ / с.
Какое оборудование поддерживает PCIe 4.0?
Некоторые аппаратные средства быстрее получат PCIe 4.0, чем другие. Обновления PCIe влияют на карты расширения вашей системы, такие как Wi-Fi, Ethernet и видеокарта. Однако обновление не всегда дает немедленный прирост. Почему? Ну, часть вашего системного оборудования уже работает на полную мощность.
Возьмите свои видеокарты. Идея расширения её возможностей великолепна, верно? Что ж, если вы не играете в разрешении 3840 × 2160 с частотой обновления 144 Гц, вы даже не превышаете текущий стандарт PCIe 3.0. Исследования Intel в области игрового влияния PCIe 4.0 показывают, что текущее оборудование все еще испытывает разрыв в производительности, прежде чем превзойти существующий стандарт. Посмотрите на следующую таблицу, в которой подробно описана пропускная способность данных различных разрешений:
Наибольший непосредственный прирост производительности для PCIe 4.0 приходит в системное хранилище. SSD-накопитель Corsair Force Series MP600 M.2 поддерживает PCIe 4.0, а скорость передачи данных достигает 5 ГБ / с — это очень быстро! В Corsair MP600 вы можете заметить огромный радиатор. Вы должны предположить, что значительное повышение температуры сопровождает повышение скорости PCIe 4.0, так что об этом нужно помнить.
Описание PCI
|
|
PCI слот — cлот на материнке из пластмассы белого цвета. Впервые появился на Пентиум-1 или на самых поздних моделях i-486. Имеет почти на порядок более высокую скорость, чем ISA, который с 2000 года на материнки не устанавливают. Первоначально использовался, в числе прочего, для подключения видеокакрт, но с конца 90-х видеокарты стали подключать через более быстрый слот AGP — как правило коричневый. Самые новые видеокарты предназначены для подключения через PCI—E.
PCI поныне остается наиболее употребительным слотом — через него подключают звуковые карты (более совершенные, чем встраиваемые в материнки) , ТВ-тюнеры, внутренние факсмодемы, дополнительные USB- и FireWire-контроллеры, АТА-контроллеры для подключения дополнительных жестких дисков и оптических дисководов (а то встроенный в материнку контроллер допускает обычно подключение лишь 4-х устройств) , сетевые карты и прочие так называемые платы расширения.
Скорость передачи и метод шифрования
В обозначении интерфейса PCI-E x16 цифра указывает на количество задействованных полос для передачи данных. В данном случае их 16. Каждая из них, в свою очередь, состоит из 2 пар проводов для передачи информации. Как было отмечено, более высокая скорость обеспечивается тем, что эти пары работают в дуплексном режиме. То есть передача информации может идти сразу в двух направлениях.
Для защиты от возможных потерь или искажения передаваемых данных применяется в этом интерфейсе специальная система защиты информации, которая называется 8В/10В. Это обозначение расшифровывается следующим образом: для правильной и корректной передачи 8 бит данных необходимо их дополнить 2 служебными битами для выполнения проверки правильности. В этом случае система вынуждена передавать 20 процентов служебной информации, которая для пользователя компьютера не несет полезной нагрузки. Но это плата за надежную и стабильную работу графической подсистемы персонального компьютера, и без этого уж точно никак не обойтись.
PCIe SSD на шине PCI-e 2.0 или 1.0
Пропускная способность PCI Express, Гбайт/с | ||||||
---|---|---|---|---|---|---|
Год выпуска |
Версия PCI Express |
Кодирование | Скорость передачи |
Пропускная способность на x линий | ||
×4 | ×8 | ×16 | ||||
2002 | 1.0 | 8b/10b | 0.50 Гбайт/с | 1.0 Гбайт/с | 2.0 Гбайт/с | 4.0 Гбайт/с |
2007 | 2.0 | 8b/10b | 1.0 Гбайт/с | 2.0 Гбайт/с | 4.0 Гбайт/с | 8.0 Гбайт/с |
2010 | 3.0 | 128b/130b | 1.97 Гбайт/с | 3.94 Гбайт/с | 7.88 Гбайт/с | 15.8 Гбайт/с |
PCI-E 2.0 x8 SSD
Название | TB | PBW | PCI-E | 4k read iops, K | 4k write iops, K | read, MB/s | write, MB/s |
---|---|---|---|---|---|---|---|
Fusion-io ioDrive II DUO MLC | 2.4 | 32.5 | 2.0 x8 | 480 | 490 | 3000 | 2500 |
SANDISK FUSION IOMEMORY SX350-1300 | 1.3 | 4 | 2.0 x8 | 225 | 345 | 2800 | 1300 |
SANDISK FUSION IOMEMORY PX600-1300 | 1.3 | 16 | 2.0 x8 | 235 | 375 | 2700 | 1700 |
SANDISK FUSION IOMEMORY SX350-1600 | 1.6 | 5.5 | 2.0 x8 | 270 | 375 | 2800 | 1700 |
SanDisk Fusion ioMemory SX300-3200 | 3.2 | 11 | 2.0 x8 | 345 | 385 | 2700 | 2200 |
SanDisk Fusion ioMemory SX350-3200 | 3.2 | 11 | 2.0 x8 | 345 | 385 | 2800 | 2200 |
SANDISK FUSION IOMEMORY PX600 | 2.6 | 32 | 2.0 x8 | 350 | 385 | 2700 | 2200 |
Huawei ES3000 V2 | 1,6 | 8,76 | 2.0 x8 | 395 | 270 | 1550 | 1100 |
Huawei ES3000 V2 | 3,2 | 17,52 | 2.0 x8 | 770 | 230 | 3100 | 2200 |
EMC XtremSF | 2,2 | 2.0 x8 | 340 | 110 | 2700 | 1000 | |
HGST Virident FlashMAX II | 2,2 | 33 | 2.0 x8 | 350 | 103 | 2700 | 1000 |
HGST Virident SSD FlashMAX II | 4,8 | 10.1 | 2.0 x8 | 269 | 51 | 2600 | 900 |
HGST Virident FlashMAX III | 2,2 | 7.1 | 2.0 x8 | 531 | 59 | 2700 | 1400 |
Dell Micron P420M | 1.4 | 9.2 | 2.0 x8 | 750 | 95 | 3300 | 630 |
Micron P420M | 1.4 | 9.2 | 2.0 x8 | 750 | 95 | 3300 | 630 |
HGST SN260 | 1.6 | 25.10 | 3.0 x8 | 1200 | 200 | 6170 | 2200 |
HGST SN260 | 3,2 | 17,52 | 3.0 x8 | 1200 | 200 | 6170 | 2200 |
Intel P3608 | 3,2 | 17,5 | 3.0 x8 | 850 | 80 | 4500 | 2600 |
Kingston DCP1000 | 3,2 | 2,78 | 3.0 x8 | 1000 | 180 | 6800 | 6000 |
3.2 | 29 | 3.0 x8 | 750 | 120 | 5500 | 1800 | |
Samsung PM1725 | 3.2 | 29 | 3.0 x8 | 1000 | 120 | 6000 | 2000 |
Samsung PM1725a | 3.2 | 29 | 3.0 x8 | 1000 | 180 | 6200 | 2600 |
Samsung PM1725b | 3.2 | 18 | 3.0 x8 | 980 | 180 | 6200 | 2600 |
FusionСтив Возняк
- Они не могут быть загрузочными
- Нужен драйвер для использования. Драйвера есть практически подо всё, но под последние версии Linux их придётся компилировать.
- Оптимальный размер сектора у них 4096 байт. (512 тоже поддерживается)
- Драйвер при наихудшем сценарии может потреблять довольно много RAM (при размере сектора 512 байт)
- Скорость работы зависит от скорости процессора, поэтому энергосберегающие технологии лучше отключать. Это и плюс и минус, так как с помощью мощного процессора устройство может работать даже быстрее, чем это указано в спецификациях
- Нуждается в хорошем охлаждении. Для серверов это не должно быть проблемой.
- Не рекомендуется для ESXi, так как ESXi предпочитает диски с сектором 512N, а это может повлечь большой расход памяти драйвером.
- Брендированные версии этих SSD, как правило, не поддерживаются вендорами до уровня последнего драйвера от SanDisk (март 2019)
Fusion PX600 1.3TB PCI-E 2.0 x8 | Intel P3700 1.6TB PCI-E 3.0 x4 |
---|---|
Циклы шины
По сигналам C/BE (от C/BE3 до C/BE0) во время фазы передачи адреса определяется тип цикла передачи данных.
C/BE |
Команда |
---|---|
0000 |
Interrupt Acknowledge (подтверждение прерывания) |
0001 |
Special Cycle (специальный цикл) |
0010 |
I/O Read (чтение порта) |
0011 |
I/O Write (запись в порт) |
0100 |
reserved (резервировано) |
0101 |
reserved (резервировано) |
0110 |
Memory Read (чтение памяти) |
0111 |
Memory Write (запись в память) |
1000 |
reserved (резервировано) |
1001 |
reserved (резервировано) |
1010 |
Configuration Read (чтение конфигурации) |
1011 |
Configuration Write (запись конфигурации) |
1100 |
Multiple Memory Read (множественное чтение памяти) |
1101 |
Dual Address Cycle (двойной цикл адреса) |
1110 |
Memory-Read Line (чтение памяти) |
1111 |
Memory Write and Invalidate (запись в память и проверка) |
Подтверждение прерывания (0000)Контроллер прерываний автоматически распознает сигнал INTA и реагирует на него передачей вектора прерывания по шине AD.
Специальный цикл (0001)
AD15-AD0 |
Описание |
---|---|
0x0000 |
Processor Shutdown (процессор прекращает работу) |
0x0001 |
Processor Halt (останов процессора) |
0x0002 |
x86 Specific Code (специальный код для машин на архитектуре Intel x86) |
0x0003 to 0xFFFF |
Reserved (зарезервировано) |
Чтение порта (0010) и запись в порт (0011)Порты ввода/вывода на шине PCI могут быть 8 или 16-ти разрядными, хотя собственно стандарт на шину PCI позволяет иметь 32-х разрядное адресное пространство. Это вызвано тем, что на компьютерах с архитектурой Intel x86, адрес порта может иметь не более 16 разрядов. Пока и 16-ти разрядный адрес порта не может быть использован, так как карты на шине ISA могут декодировать только 10 разрядов.
Адресное пространство конфигурации доступно по адресам портов 0x0CF8 (Адрес) и 0x0CFC (Данные), причем адрес должен быть записан первым.
По шинам AD передается адрес двойным словом (четыре байта). Сигналы AD0 и AD1 декодировать не требуется. Истинность данных определяется сигналами C/BE.
Эти операции выполняются для конфигурационного пространства PCI карты. Размер области конфигурации составляет 256 байт, причем читать/записывать в нее можно только в 32-х разрядной сетке, т.е. двойными словами. Поэтому AD0 и AD1 должны быть установлены в 0, AD2-7 содержать адрес двойного слова, AD8-10 используются для выбора адресуемого устройства, а оставшиеся шины адреса игнорируются.
Адрес/Бит 32 16 15 000 Unit ID | Manufacturer ID04 Status | Command08 Class Code | Revision0C BIST | Header | Latency | CLS10-24 Регистр адреса28 Резерв2C Резерв30 Базовый адрес ПЗУ устройства34 Резерв38 Резерв3C MaxLat|MnGNT | INT-pin | INT-line40-FF Используется самим устройством
Примечания:
-
Unit ID — идентификационный номер устройства
-
Manufacturer ID — идентификатор производителя устройства
-
Status — состояние
-
Class Code — код класса устройства
-
BIST — Built-In Self Test — встроенный тест
Это расширение обычного цикла чтения памяти. Используется для чтения больших блоков памяти без кэширования.
Двойной цикл адреса (1101)Двойной цикл адреса необходим в том случае, если необходимо передать 64-х разрядный адрес в версии PCI с 32-х разрядной адресной сетке. В первом цикле передаются четыре младших байта адреса, затем четыре старших байта. Во втором цикле необходимо также передать команду, определяющую тип устройства, чей адрес выставлен (порт ввода/вывода, память и т.д.). Собственно PCI поддерживает 64 разряда адреса для портов ввода/вывода, но в PC на процессорах архитектуры от Intel такое адресное пространство не поддерживается (не позволяет сам процессор).
Распиновка PCI Express
Исчерпывающе показать расположение выходов линий связи проще на примере линий самого крупного и скоростного порта.
Устройство контактной группы слота PCI-Express 16x:
Соединение PCIe доказало свою эффективность. Оно отвечает всем современным требованиям по скорости передачи информации и стабильности работы. Обладая огромным потенциалом модернизации позволяет сохранять совместимость многочисленных устройств разного поколения: контролеров, адаптеров. Кроме того, служит широким каналом, позволяющим наращивать вычислительные мощности. Особенным и неожиданным местом применения этой технологии стала телекоммуникационная сфера.
Появившись в 2002 году, эта разновидность транспорта данных до сих пор остается самой актуальной, распространенной, непрерывно развивающейся и по-прежнему перспективной.
Устаревшие поколения
Стандартным интерфейсом для подключения видеокарт на данный момент является шина PCI-Express (PCIe или PCI-E), которая пришла на смену AGP.
Основное различием между PCI-Express 16x и PCI-Express 2.0 в том, что в версии 2.0 была увеличена максимальная пропускная способность до 8 Гбит/с в каждом направлении, а также увеличивает возможности энергоподачи до 300 Вт, для этого на видеокарты устанавливается 2 x 4-штырьковый разъем питания.
PCI-Express реализован в различных версиях, отличающихся пропускной способностью: 1x, 2x, 4x, 8x, 16x и 32х. Видеоинтерфейс PCI-E 16x обеспечивает пропускную способность равную 4 Гб/с в каждом направлении. Также были реализации PCI-Exp 8x (в бюджетных SLI- или CrossFire-решениях) и PCI-E 4x (или PCI-Express Lite).
Конечно, чем выше пропускная способность видеокарты, тем выше производительность и FPS в играх. Однако, у видеоинтерфейса AGP пропускная способность была практически такой же, как и у ранних версиях PCI-Express, и преимущество последнего было в масштабировании, а значит можно было подключить одновременно до четырех видеокарт.
Стандарт PCI-Express обеспечивает мощность питания: по напряжению 3,3 В до 3 А, по 12 В – до 5,5 А. Таким образом всего до 76 Вт отдаваемой видеокарте мощности. Но даже этого некоторым видеокартам не хватает и на них устанавливают один или несколько дополнительных 6-контактных разъема PCI-Express, при этом каждый способен дополнительно обеспечить ток по шине 12 В – до 6 А, а значит всего 72 или 144 Вт мощности. Значит PCI-Express 1.1 может обеспечить питание видеокарты, которые потребляют до 220 Вт электроэнергии.
Видеостандарт AGP имеет до 42 Вт отдаваемой мощности, так как по шине питания 3,3 В видеокарта потребляет до 6 А, по 5 В – до 2 А, по 12 В – 1А.
AGP
AGP (Accelerated Graphics Port) –32-битная системная шина для видеокарты. Стандарт был разработан в 1997 году компанией Intel. Хоть стандарт является устаревшим, в продаже все еще можно встретить видеокарты с этим видеоинтерфейсом.
Для сравнения с пропускной способностью PCI Express приведем пример нескольких вариантов шины AGP:
- AGP 1х — 266 Мб/с;
- AGP 2х — 533 Мб/с;
- AGP 4х -1,07 Гб/с;
- AGP 8х — 2,1 Гб/с.
Принцип работы
Рисунок 1 — Aрхитектура PC с шиной PCI
Шина обладает процессоро-независимостью (в отличие от VLbus) и может работать параллельно с шиной процессора, не обращаясь к ней за запросами. Например, процессор работает с кэшем или системной памятью, а в это время по сети на ЖД производится запись информации, тем самым загрузка шины процессора значительно снижается. Кроме того, стандарт шины был объявлен открытым и передан PCI Special Interest Group, которая продолжила работу по совершенствованию шины (в настоящее время доступен R2.1).
Основные возможности
Рисунок 2 — Разъемы
Синхронный 32-х или 64-х разрядный обмен данными (однако 64-разрядная шина в настоящее время используется только в Alpha-системах и серверах на базе процессоров Intel Xeon). При этом для уменьшения числа контактов (и стоимости) используется мультиплексирование, то есть адрес и данные передаются по одним и тем же линиям.
Поддержка 5V и 3.3V логики. Разъемы для 5 и 3.3V плат различаются расположением ключей.
Разъемы
Существуют и универсальные платы, поддерживающие оба напряжения. Заметим, что частота 66MHz поддерживается только 3.3V логикой.
Частота работы шины 33MHz или 66MHz (в версии 2.1) позволяет обеспечить широкий диапазон пропускных способностей (с использованием пакетного режима):
- 132 МВ/сек при 32-bit/33MHz;
- 264 MB/сек при 32-bit/66MHz;
- 264 MB/сек при 64-bit/33MHz;
- 528 МВ/сек при 64-bit/66MHz.
При этом для работы шины на частоте 66MHz необходимо, чтобы все периферийные устройства работали на этой частоте.
Полная поддержка multiply bus master (например, несколько контроллеров жестких дисков могут одновременно работать на шине).
Поддержка write-back и write-through кэша.
Автоматическое конфигурирование карт расширения при включении питания.
Спецификация шины позволяет комбинировать до восьми функций на одной карте (например, видео + звук и т.д.).
Шина позволяет устанавливать до 4 слотов расширения, однако возможно использование моста PCI-PCI для увеличения количества карт расширения.
PCI-устройства оборудованы таймером, который используется для определения максимального промежутка времени, в течении которого устройство может занимать шину.
При разработке шины в ее архитектуру были заложены передовые технические решения, позволяющие повысить пропускную способность.
Шина поддерживает метод передачи данных, называемый «linear burst» (метод линейных пакетов). Этот метод предполагает, что пакет информации считывается (или записывается) «одним куском», то есть адрес автоматически увеличивается для следующего байта. Естественным образом при этом увеличивается скорость передачи собственно данных за счет уменьшения числа передаваемых адресов.
Шина PCI является той черепахой, на которой стоят слоны, поддерживающие «Землю» — архитектуру Microsoft/Intel Plug and Play (PnP) PC architecture. Спецификация шины PCI определяет три типа ресурсов: два обычных (диапазон памяти и диапазон ввода/вывода, как их называет компания Microsoft) и configuration space — «конфигурационное пространство».
Рисунок 3 — Конфигурационное пространство
Конфигурационное пространство состоит из трех регионов(см. рис. 3):
- заголовка, независимого от устройства (device-independent header region);
- региона, определяемого типом устройства (header-type region);
- региона, определяемого пользователем (user-defined region).
В заголовке содержится информация о производителе и типе устройства — поле Class Code (сетевой адаптер, контроллер диска, мультимедиа и т.д.) и прочая служебная информация.
Следующий регион содержит регистры диапазонов памяти и ввода/вывода, которые позволяют динамически выделять устройству область системной памяти и адресного пространства. В зависимости от реализации системы конфигурация устройств производится либо BIOS (при выполнении POST — power-on self test), либо программно. Базовый регистр expansion ROM аналогично позволяет отображать ROM устройства в системную память. Поле CIS (Card Information Structure) pointer используется картами cardbus (PCMCIA R3.0). С Subsystem vendor/Subsystem ID все понятно, а последние 4 байта региона используются для определения прерывания и времени запроса/владения.
Роли устройств на шине
Спецификация PCI позволяет любому устройству выступать в роли как исполнителя (target), так и задатчика (master). Исполнитель следит за транзакциями, выполняемыми на шине, и когда обнаруживает транзакцию, адресованную ему, приступает к её обработке (транзакции описаны в разделе Функционирование шины PCI). Задатчик инициирует транзакцию и в её фазе адреса указывает, какое устройство будет выступать в роли исполнителя.
Поскольку на шине может быть несколько задатчиков, спецификация предусматривает схему арбитража. Устройство, желающее выступить в роли задатчика, выдаёт связанный с ним сигнал REQ#. Получив ответный сигнал GNT#, оно может начинать транзакцию.
Шина PCI
- Подробности
- Родительская категория: Системные платы
- Категория: Локальные шины
В начале 1992 года Intel организовала группу разработчиков, перед которой была поставлена та же задача, что и перед группой VESA: разработать новую шину, в которой были бы устранены все недостатки шин ISA и EISA.
В июне 1992 года была выпущена спецификация шины PCI версии 1.0, которая с тех пор претерпела несколько изменений.
Создатели PCI отказались от традиционной концепции, введя еще одну шину между процессором и обычной шиной ввода-вывода. Вместо того чтобы подключить ее непосредственно к шине процессора, весьма чувствительной к подобным вмешательствам (что было характерно для VL-Bus), они разработали новый комплект микросхем контроллеров для расширения шины.
Шина PCI добавляет к традиционной конфигурации шин еще один уровень. При этом обычная шина ввода-вывода не используется, а создается фактически еще одна высокоскоростная системная шина с разрядностью, равной разрядности данных процессора. Компьютеры с шиной PCI появились в середине 1993 года, и вскоре она стала неотъемлемой частью компьютеров высокого класса.
Тактовая частота стандартной шины PCI — 33 МГц, а разрядность соответствует разрядности данных процессора. Для 32-разрядного процессора пропускная способность составляет 132 Мбайт/с:
33,33 МГц × 4 байт (32 бит) = 133 Мбайт/с.
Стандартная шина PCI имеет несколько разновидностей, представленных в табл. 4.76. Большинство современных компьютеров вооружены разъемами PCI-Express x1 и PCI-Express x16. В настоящее время 64-разрядные шины или шины с рабочей частотой 66 и 133 МГц используются только в системных платах серверов или рабочих станций. Одно из основных преимуществ шины PCI заключается в том, что она может функционировать параллельно с шиной процессора (т.е. независимо от нее). Это позволяет процессору обрабатывать данные внешней кэш-памяти одновременно с передачей информации по шине PCI между другими компонентами системы.
Для подключения адаптеров шины PCI используется специальный разъем (см. рисунок ниже). Платы PCI могут быть тех же размеров, что и платы для обычной шины ввода-вывода, однако конфигурация разъемов позволяет отличить их от старых плат с интерфейсами ISA, MCA и EISA.
В спецификации PCI определено три типа системных плат, каждая из которых разработана для определенных моделей компьютеров с различными требованиями к электроснабжению. Существуют 32- и 64-разрядные версии шины PCI. Версия с напряжением 5 В предназначена для стационарных компьютеров (PCI 2.2 или более ранних версий), версия с напряжением 3,3 В — для портативных систем (также поддерживается PCI 2.3), а универсальная версия предназначена для системных плат и внешних адаптеров, подключаемых к любому из перечисленных разъемов. Универсальные шины и 64-разрядные шины PCI с напряжением 5 В преимущественно предназначены для серверных системных плат. Спецификацией PCI-X 2.0 для версий 266/533 обусловлена поддержка напряжений 3,3 и 1,5 В, что соответствует стандарту PCI 2.3 с поддержкой напряжения 3,3 В.
Обратите внимание, что универсальная плата PCI может устанавливаться в разъем, предназначенный для любой платы с фиксированным напряжением питания. Если напряжение, подаваемое на те или иные контакты, может быть разным, то оно обозначается +В I/O
На эти контакты подается опорное напряжение, определяющее уровни выходных логических сигналов.
Другим важным свойством платы PCI является то, что она удовлетворяет спецификации Plug and Play компании Intel. Это означает, что PCI не имеет перемычек и переключателей и может настраиваться с помощью специальной программы настройки. Системы с Plug and Play способны самостоятельно настраивать адаптеры, а в тех компьютерах, в которых отсутствует система Plug and Play, но есть разъемы PCI, настройку адаптеров нужно выполнять вручную с помощью программы настройки BIOS. С конца 1995 года в большинстве компьютеров устанавливается система BIOS, удовлетворяющая спецификации Plug and Play и обеспечивающая автоматическую настройку.
- < Назад
- Вперёд >
Что такое PCI Express и что он обозначает?
PCI Express означает Peripheral Component Interconnect Express и представляет собой стандартный интерфейс для подключения периферийного оборудования к материнской плате на компьютере. Другими словами, PCI Express или сокращенно PCIe — это интерфейс, который подключает к материнской плате внутренние карты расширения, такие как видеокарты, звуковые карты, адаптеры Ethernet и Wi-Fi . Кроме того, PCI Express также используется для подключения некоторых типов твердотельных накопителей, которые обычно очень быстрые.
Какие типы слотов и размеров PCI Express существуют, и что означают линии PCIe? Для подключения плат расширения к материнской плате PCI Express использует физические слоты. Обычными слотами PCI Express, которые мы видим на материнских платах, являются PCIe x1, PCIe x4, PCIe x8 и PCIe x16. Число, которое следует за буквой «х», говорит нам о физических размерах слота PCI Express, который, в свою очередь, определяется количеством контактов на нем. Чем больше число, тем длиннее слот PCIe и тем больше контактов, которые соединяют плату расширения с гнездом.
Кроме того, число «х» также указывает, сколько полос доступно в этом слоте расширения. Вот как сравниваются часто используемые слоты PCIe:
- PCIe x1: имеет 1 полосу , 18 контактов и длину 25 мм
- PCIe x4: имеет 4 линии , 32 контакта и длину 39 мм
- PCIe x8: имеет 8 линий , 49 контактов и длину 56 мм
- PCIe x16: имеет 16 линий , 82 контакта и длину 89 мм
Линии PCI Express — это пути между набором микросхем материнской платы и слотами PCIe или другими устройствами, являющимися частью материнской платы, такими как разъем процессора, слоты M.2 SSD, сетевые адаптеры, контроллеры SATA или контроллеры USB.
В PCI Express каждая полоса индивидуальна, что означает, что она не может быть разделена между различными устройствами. Например, если ваша видеокарта подключена к слоту PCIe x16, это означает, что она имеет 16 независимых линий, выделенных только для нее. Никакой другой компонент не может использовать эти полосы, кроме графической карты.
Вот идея, которая может упростить вам понимание того, что такое линии PCI Express: просто представьте, что PCI Express — это магистраль, а автомобили, которые едут по ней, — это данные, которые передаются. Чем больше полос движения доступно на шоссе, тем больше автомобилей можно проехать по нему; чем больше у вас PCIe-линий, тем больше данных можно передать.
Карта PCI Express может устанавливаться и работать в любом слоте PCIe, доступном на материнской плате, если этот слот не меньше платы расширения. Например, вы можете установить карту PCIe x1 в слот PCIe x16. Тем не менее, вы не можете сделать обратное. Например, вы можете установить звуковую карту PCIe x1 в слот PCIe x16, но вы не можете установить графическую карту PCIe x16 в слот PCIe x1.
Какие версии PCI Express существуют, и какую скорость передачи данных (пропускную способность) они поддерживают?
Сегодня используются четыре версии PCI Express: PCI Express 1.0, PCI Express 2.0, PCI Express 3.0 и PCI Express 4.0. Каждая версия PCIe поддерживает примерно удвоенную пропускную способность предыдущего PCIe . Вот что предлагает каждый из них:
- PCI Express 1.0: имеет пропускную способность 250 МБ / с на линию
- PCI Express 2.0: имеет пропускную способность 500 МБ / с на линию
- PCI Express 3.0: имеет пропускную способность 984,6 МБ / с на линию
- PCI Express 4.0: имеет пропускную способность 1969 МБ / с на линию
Помните, что слоты PCIe могут предложить не одну, а несколько дорожек? Значения полосы пропускания, которые мы разделили, умножаются на количество линий, доступных в слоте PCIe. Если вы хотите рассчитать, сколько пропускной способности доступно для определенной платы расширения, вам нужно умножить пропускную способность PCIe на линию на количество доступных для нее линий.
Например, графическая карта, которая поддерживает PCI Express 4.0 и подключена к слоту PCIe x16, имеет доступ к общей пропускной способности около 31,51 ГБ / с. Это результат умножения 1969 МБ / с на 16 (пропускная способность PCIe на линию * 16 линий). Впечатляет, правда?
Вот как масштабируются версии PCI Express, если принять во внимание линии PCI Express:
В будущем появятся новые версии PCI Express, такие как PCI Express 5.0 и PCI Express 6.0. Спецификация PCIe 5.0 была доработана летом 2019 года, предлагая пропускную способность до 3938 МБ / с на линию и до 63 ГБ / с в конфигурации x16. Однако, скорее всего, мы не увидим его в ближайшее время на компьютерном оборудовании потребительского уровня.
Как работает карта PCI Express?
Карты PCI Express не должны работать как шина, которая обрабатывает данные из нескольких источников, но могут реализовывать серию соединений точка-точка через коммутаторы, чтобы контролировать, где данные передаются. После установки сетевой карты PCIe между слотами устанавливается логическое соединение для связи друг с другом. Это соединение, называемое межсоединением или каналом, обеспечивает двухточечный канал связи между двумя портами PCIe и позволяет им отправлять и получать обычные запросы и прерывания PCI. Как показано ниже, слот PCIe содержит одну или несколько дорожек. Для линии x2 каждый канал состоит из двух разных пар передачи данных: одна пара для передачи данных, а другая для приема данных. Поэтому каждый канал состоит из четырех проводов или сигнальных трасс.
Рисунок:Как работает карта PCIe?
Версия PCIe: 4.0, 3.0, 2.0 и 1.0
Любое число после PCIe, которое вы найдете на устройстве или системной плате, указывает номер последней версии используемой спецификации PCI Express.
Вот как сравниваются различные версии контроллера PCI Express:
Пропускная способность (на полосу) | Пропускная способность (на полосу в слоте x16) | |
PCI Express 1.0 | 2 Гбит/с (250 МБ/с) | 32 Гбит/с (4000 МБ/с) |
PCI Express 2.0 | 4 Гбит/с (500 МБ/с) | 64 Гбит/с (8000 МБ/с) |
PCI Express 3.0 | 7.877 Гбит/с (984,625 МБ/с) | 126,032 Гбит/с (15754 МБ/с) |
PCI Express 4.0 | 15.752 Гбит/с (1969 МБ/с) | 252,032 Гбит/с (31504 МБ/с) |
Все версии высокоскоростного порта совместимы в обратном и обратном направлении, что означает независимо от того, какую версию поддерживает плата PCIe или ваша
материнская плата, они должны работать вместе, по крайней мере, на минимальном уровне.
Как можно заметить, основные обновления стандарта порта резко увеличивают пропускную способность каждый раз, значительно увеличивая потенциал того, что
может сделать связанное оборудование.
Улучшения версии также устраняют ошибки, добавленные функции и улучшенное управление питанием, но увеличение полосы пропускной способности это самое важное
изменение для заметок от версии к версии
Основные характеристики PCI–Express (1.0, 2.0 и 3.0)
Несмотря на то, что названия PCI и PCI-Express очень похожи, принципы соединения (взаимодействия) у них кардинально отличаются. В случае PCI-Express используется линия – двунаправленное последовательное соединение, типа «точка-точка», данных линий может быть несколько. В случае с видеокартами и материнскими платами (не учитываем Cross Fire и SLI), которые поддерживают PCI-Express x16 (то есть большинство), можно запросто догадаться, что таких линий 16 (рис.3), довольно часто на материнских платах с PCI-E 1.0, можно было наблюдать второй слот x8, для работы в режиме SLI или Cross Fire.
Ну, а в PCI, устройство подключается к общей 32- х разрядной параллельной шине.
Рис. 3. Пример слотов с различным количеством линий
(как уже говорилось ранее, наиболее часто используется х16)
Для интерфейса PCI-Express 1.0 пропускная способность составляет 2,5 Гбит/c. Эти данные нужны нам, чтобы отслеживать изменения этого параметра в различных версиях PCI-E.
Далее, версия 1.0 эволюционировала в PCI-E 2.0. В результате данного преображения, мы получили в два раза большую пропускную способность, то есть 5 Гбит/c, но хотелось бы отметить, что в производительности графические адаптеры, особо не выиграли, так как это просто версия интерфейса. Большая часть производительности зависит от самой видеокарты, версия интерфейса может только незначительно улучшать или тормозить передачу данных (в данном случае «торможения» нет, и присутствует неплохой запас).
Точно так же в 2010 году, с запасом, был разработан интерфейс PCI-E 3.0, на данный момент он используется во всех новых системах, но если у Вас все ещё 1.0 или 2.0, то не горюйте – ниже мы поговорим о относительно обратной совместимости различных версий.
В версии PCI-E 3.0, пропускная способность была увеличена в два раза по сравнению с версией 2.0. Также там было произведено немало технических изменений.
К 2015 году ожидается появление на свет PCI-E 4.0, что для динамической IT-индустрии абсолютно неудивительно.
Ну да ладно, будем заканчивать с этими версиями и цифрами пропускной способности, и затронем очень важный вопрос обратной совместимости различных версий PCI-Express.